Categories
Community

Enhancing Online Security: Best Practices for Developers

Developing a new software platform, mobile application, or online tool can be a great opportunity to offer innovative tools to the public. It can also present some serious risks. There will be those who seek to steal your intellectual property during the dev process. Alternatively, your completed product may be targeted by those who want to exploit valuable user data.

This makes it vital that your development team enhances its online security measures. 

Be Proactive

As a developer — or a leader of a dev team — it’s important not to treat security as a set of superficial defensive measures. This reactive attitude can put you and your applications on the back foot, struggling against the onslaught of threats. You and your team need to be proactive in making security as central and important to development as your coding.

One good approach to this is to make the product secure by design. As the name suggests, this process is about incorporating strong online security into the design phase of the development lifecycle. You’ll basically avoid waiting to consider security until the testing phase of the project or even fixing bugs in the beta phase, as is common. Instead, alongside brainstorming the key features of your product, your team should be looking at what the specific security challenges of the product are likely to be and how to minimize them. This allows you to build a strong security foundation from the outset.

Another way to be proactive in implementing security measures is to ensure your team follows Secure Software Development Lifecycle (SSDLC) protocols. This is effectively a set of actions that are baked into every task developers on your team perform so that they can identify and handle potential issues before they become problematic. It includes creating a culture of security in which threats are discussed and considered regularly. It should involve frequent cybersecurity training so that your dev team is fully aware of the latest threats and protection techniques. Importantly, the development environment itself should be secure, both digitally and physically.

Utilize Advanced Encryption Techniques

Encryption is one of the most powerful tools for ensuring online security. This is particularly effective for minimizing unauthorized access to data that is likely to be shared online both during the development lifecycle and by consumers when using the final product.

Identify and use strong encryption algorithms

Algorithms are the basis upon which encryption operates. Therefore, it’s important to utilize the most appropriate algorithms both for the product itself and protecting your networks. For instance, Advanced Encryption Standard (AES) is a common tool for development teams. This symmetric algorithm performs multiple encryption rounds before breaking the data down into smaller blocks. Some software and apps that require end-user authentication to access sensitive data — like financial information — may be better served by asymmetric encryption, such as the Rivest-Shamir-Adleman (RSA) protocol.

Adopting solid key management

Any encryption algorithm you adopt requires keys to be generated and shared to decrypt the information. It’s vital that you implement management measures to mitigate unauthorized access to and use of these keys. It’s important to formalize which members of the team can obtain and use these keys. It’s also vital to regularly change keys, much as you might update a password to keep it strong.

Conduct Vulnerability Assessments and Improvements

The cybersecurity landscape is in flux. Even within the timeline of your development process, new threats can emerge and come into favor. One of the best practices developers need to adopt is conducting regular vulnerability assessments and making relevant improvements.

Perhaps the most convenient approach during development is using automated scanning software. You can invest in tools that scan both the specific code of your project alongside your overall IT infrastructure. There’s even an increasing number of artificial intelligence (AI) driven scanners that use machine learning algorithms to learn about and adapt to the security landscape in relation to your development. In addition, utilizing a DevOps monitoring tool can allow you to see real-time performance issues that could suggest weaknesses in security, such as slow response times.

It’s also wise to remember that your development team’s workflow can be a source of vulnerability. For instance, too many unnecessary repetitive security processes might cause dev staff to become complacent and overlook key protective actions. A commitment to regular process improvement can help you not only minimize weak points but also boost efficiency. Not to mention it helps you to notice changes in the security landscape and adapt to them. You can do this by taking time to map out both formal and informal processes visually in flow diagrams at milestones during the development lifecycle. This helps you to analyze where inefficiencies occur and what processes you can consolidate and strengthen.

Conclusion

With some solid security best practices, you can ensure your development project is protected from threats throughout the project’s life cycle. This should include taking secure-by-design protocols and adopting string encryption, among other measures. Wherever possible make certain that you have a cybersecurity expert embedded into your dev team or available to consult regularly. This can help you both implement effective processes and stay abreast of any potential threats you need to prepare for.